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Abstract

Minimizing the cost function that corresponds to propositional logic is vital to ensure the learn-
ing phase of HNN can occur optimally. In that regard, optimal and non-biased algorithm is
required to ensure HNN will always converge to global solution. Ant Colony Optimization
(ACO) is a population-based and nature-inspired algorithm to solve various combinatorial op-
timization problems. ACO simulates the behaviour of the real ants that forage for food and
communication of ants through pheromone density. In this work, ACO will be used to mini-
mize the cost function that corresponds to the logical rule in Hopfield Neural Network. ACO
will utilize pheromone density to find the optimal path that leads to zero cost function without
consumingmore learning iteration. Performance for all learningmodels will be evaluated based
on various performance metrics. Results collected from computer simulation implies that ACO
outperformed conventional learning model in minimizing the logical cost function.

Keywords: 2 satisfiability logic; ant colony optimization; propositional logic; hopfield neural
network.
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1 Introduction

Hopfield Neural Network (HNN) [8] is a single-layered neuron that is connected by synaptic
weight. Each of the neurons inHNNwill fire if the product of the synapticweight and neuron state
exceeded the threshold value. The main contribution of HNN [8] in this work serves as the best
variant of recurrent neural network in logic programming and combinatorial problems. Despite
the success of HNN in solving various combinatorial problems, HNN suffers several disadvan-
tages such as capacity issues. As the number of neurons increased, the capacity of the associative
memory decreases exponentially. This problem eventually led to the idea of assigning neurons
in HNN with a set of logical rules. Abdullah [1] proposed logic programming in HNN by com-
paring the cost function with the final energy function. The work of [1] has been the core of the
optimal synaptic weight computation which lead to a more feasible way of propositional logic
programming in HNN. The optimal synaptic weight calculation proposed by Abdullah [1] also
coined as Wan Abdullah method has contributed to an effective synaptic weight calculations by
comparing the cost function of the propositional logic and the energy function in HNN. In this
work, Wan Abdullah method will be integrated with a metaheuristic algorithm in optimizing the
learning phase in HNN.

The proposed work has been further improved by Sathasivam [9] where a systematic form
of propositional logic called 2 Satisfiability has been implemented in HNN. The proposed HNN
managed to achieve an acceptable global minimum solution during the retrieval phase. This work
is a starting point to the implementation of the systematic logical rule in HNN. The proposed
method is managed to achieve the final neuron state that corresponds to the global minimum so-
lution. The proposed hybridHNN integratedwith various activation function reduce the possible
local minimum energy. Immediately afterwards, Alway et al. [2] proposed the first logical rule
that considers the major proportion of the second-order logic with respect to other orders of log-
ical rule. By increasing the number of second-order logic with respect to other logical rules, the
proposedHNN obtained is reported to obtainmore solution variation than the existing work. Un-
fortunately, all the mentioned study has a severe limitation during the learning phase of HNN. As
the number of neurons increased, the storage capacity of the HNN reduced dramatically which
leads to the more local minimum solution (suboptimal solution). Based on Alway et al. [2],
the abundance of local minima solutions manifested the weaknesses in the learning phase that
requires an optimization algorithm towards the synaptic weight management even though the
computation has been correct viaWan Abdullah method. Thus, the work of [2] has confirmed the
importance of having effective metaheuristics to reduce the learning error.

Finding the consistent interpretation that leads to zero cost function is important to ensure
HNN always learn Satisfiable logic. Kasihmuddin et al. [9] proposed a Genetic Algorithm (GA)
in minimizing the cost function associated with 2SAT logical rule. The proposed GA is compared
with the conventional exhaustive search [9] and is reported to reduce the learning error. Thework
of Kasihmuddin et al. [9] has provided an insight on the potential of metaheuristic algorithm in
minimizing the cost function and optimizing the learning phase of 2SAT logical rule. This shows
the importance of exploitation in minimizing the cost function that leads to the optimal synaptic
weight which will lead to an optimal final neuron state. The main problem with the proposed
evolutionary algorithm is the difficulty of the solution to converge to the final neuron state. In this
case, effective swarm metaheuristics (SI) algorithm is required to locate the optimal final neuron
state with a smaller number of iterations.

Ant Colony Optimization (ACO) is proposed as a method to solve hard combinatorial opti-
mization problems (COPs) [6]. Based on [6] ACO has been designed as an ideal algorithm for
discrete optimization due to the existence of various discrete operator and optimizer that will im-
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prove the learning phase of the computational model. Among the many strands of SI, the ACO
algorithm is considered one of the most successful ones [3, 4]. Both [3, 4] has mapped the inspi-
ration of natural and social swarm insect behaviour into a potential swarm intelligence system in
terms of optimization algorithmswith related formulations. For instance, by leaving behind a trail
of pheromones, ants will locate the shortest trail connecting their nest and the food source. The
social behaviour of ants has been a breakthrough in swarm metaheuristic development. Zhang
and Crossley [15] showed that ACO can be utilized to effectively solve optimization problems
and ACO produces an optimal solution. Based on [15], the work has been applied as a basis of
the formulation of our proposed ACO algorithm in this work. Therefore, the reliability of ACO
has affirmed the capability of ACO in optimizing the learning phase in HNN. ACO is efficient and
useful since it can acquire satisfactory solutions in an acceptable computation time. The main dif-
ference between the conventional ACOwith this paper is the use of binary output to represent the
variable of the logical rule. To our best knowledge, there is no recent implementation of binary
ACO during the learning phase of HNN. By capitalizing on the feature of the artificial ants that
can exploit and explore, ACOwill be able to minimize the cost function associated with the logical
rule. In this case, the solution produced by ACO will be diversified during the global and local
search. Hence, the contribution of this paper:

i) We proposed 2 Satisfiability logical rules in Hopfield Neural Network. The proposed logical
rule can be implemented into Hopfield Neural Network by comparing the cost function with
final the Lyapunov Energy function.

ii) Functional binary Ant Colony optimization that utilizes pheromone and visibility density
model will be proposed. The proposed metaheuristics learn all the logical combinations of
logic during the learning phase of the Hopfield Neural Network.

iii) Extensive analysis of the proposed hybrid network on the simulated datasets. The perfor-
mance of the proposed hybrid network is observed to be competitive with the state-of-the-art
Hopfield Neural network model.

In this paper, ACO will be embedded in HNN to do the 2SAT logical rule. Thus, HNN, 2SAT
and ACO will be integrated as a single intelligent unit that produces the final neuron state corre-
sponds to the learned logical rule. The rest of the paper is organized as follows: the formulation
of the proposed logical rule namely 2 Satisfiability is given in the next section. The proposed
2SAT will be implemented in HNN in the next section. The detail of the proposed ACO will be
explained and the detailed experimentation setup will be discussed. Finally, the final two sections
will emphasize the result, discussion, and concluding remarks.

2 Materials and Methods

2.1 2 Satisfiability

The 2 Satisfiability (2SAT) is a logical rule that comprises of only 2 literals per clause. 2SAT is
usually expressed as Boolean formulas calledConjunctiveNormal Form (CNF) orKrom formulas.
2SAT consists of three components [9]:

i) A set of x variables, V1, V2, ..., Vx.

ii) A set of literals. A literal can be any variable or a negation of any variable.
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iii) A set of y definite clauses, C1, C2, C3..., Cy linked by logical AND (∧). Each clause comprises
of strictly 2 literals joined by just logical OR (∨).

Each of the variable can only take bipolar value of 1 or −1 which represents true or false respec-
tively. Explicit definition of the 2SAT formula P2SAT is given by

P2SAT =

y∧
i=1

Ci, (1)

where Ci is a list of clause with 2 variables each,

Ci =

y∨
i=1

(mi, ni) , (2)

wheremi and ni are the possible variables of the clause Ci. The main objective of P2SAT is to find
the consistent interpretation that make formula P2SAT become satisfied [9]. The selection of 2
literals per clause in P2SAT reduce the logical complexity in discovering the relationship between
the variables ANN.

2.2 2 Satisfiability in Hopfield Neural Network

HNN is one of the most commonly used neural network models. It is a simple neural network
model that has feedback connections. HNNsystematically stores patterns as a content addressable
memory (CAM) [10]. The work of [10] has been tremendously contributed in elucidating the
brief process of CAM storage and memory, as the main features of HNN. HNN is a network of N
interconnected neurons where the output and input of each neuron is connected. The connection
weight from neuron i to j is denoted by wij . In HNN, wij = wji, (symmetric networks), and
wii = wjj = 0 (no self-feedback connections). Let Si be the state or output of the i th unit, θi is
the pre-defined threshold of unit i. For bipolar networks, Si is either +1 or −1. General updating
rule in HNN is given by:

Si =

{
1 if

∑N
j wijSj ≥ θi,

−1 otherwise.
(3)

P2SAT can be implemented in HNN by assigning neuron to each variable in the formula. In this
case, there is no redundant variable inP2SAT when it is implemented inHNN.The implementation
of P2SAT in HNN is abbreviated as HNN-2SAT. Note that, the aim of the HNN-2SAT is to create
an HNN that retrieve P2SAT pattern during the retrieval phase. The cost function EP2SAT

that
corresponds to P2SAT is given as follows:

EP2SAT
=

NC∑
i=1

NV∑
j=1

Lij , (4)

where NC and NV represent the number of clause and variable respectively. The logical incon-
sistency Lij is obtained by negating Equation (4):

Lij =

{
1
2 (1− Sx) if ¬x,
1
2 (1 + Sx) otherwise.

(5)
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Similar to conventional HNN, synaptic weight of the HNN-2SAT is symmetrical and there is
no self-connection between the neurons. HNN-2SAT employs Wan Abdullah method [1] where
the synaptic weight is obtained by comparing EP2SAT

with HP2SAT
. Thus, the local field hi(t) of

the HNN-2SAT is given by:

hi(t) =

N∑
j=1,i6=j

w
(2)
ij Sj + w

(1)
i . (6)

The output classification of the Equation (6) is given as follows:

Si(t) =

{
1,

∑N
j=1,i6=j w

(2)
ij Sj + w

(1)
i ≥ 0,

−1,
∑N
j=1,i6=j w

(2)
ij Sj + w

(1)
i < 0.

(7)

The final state of neurons will be examined by using Lyapunov or energy function:

HP2SAT
= −1

2

N∑
i=1,i6=j

N∑
j=1,i6=j

w
(2)
ij SiSj −

N∑
i=1

w
(1)
i Si. (8)

Note that, Equations (7)-(8) ensure the final neuron state will always converge the nearest
minimum energy. In this context, if the final neuron state is considered correct if it achieves global
minimum energy. Another interesting perspective is, we can determine the absolute minimum
energyHmin

P2SAT
that corresponds to the number of clause in the HNN-2SAT based on the following

formula:

Hmin
P2SAT

= − ε
4
, (9)

where ε is the number of clause Ci in HNN-2SAT. Hence, the quality of the solution produced by
HNN-2SAT can be examined using the following condition:

|HP2SAT
−Hmin

P2SAT
| ≤ ω, (10)

where ω is a tolerance value of the network. The main issue of this implementation is the logical
verification during learning phase of HNN-2SAT. As the number of neuron increased, HNN-2SAT
requiresmore feasible search space to obtain the optimal interpretation. In otherword, AntColony
Optimization is required to find the interpretation that minimize the inconsistency of the logical
rule before the optimal synaptic weight can be assigned.

2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is simulated by the behaviour of foraging of real ants [6].
Real ants traverse the space surrounding their nest in random when searching for food. The ant
will evaluate and carry back some of the food to the nest when it finds a food source. When trav-
elling back to the nest, the ant will leave a trace of pheromone on the ground. Density of the
pheromone it deposits is decided by the amount and value of the food. Pheromones deposited
will lead the other ants to the food source. Through the pheromone trails, the ants are able to
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find short paths from their nest to the food source [7]. The work of [7] relates the movements of
Ants in finding the shortest path with the concept of optimization. Therefore, it has been a solid
proof of the potential application of ACO in optimization problems including our propositional
logic. ACO algorithm consists of artificial ants (agents) with distinctive functions and structures.
The agents work with each other to accomplish a potential unified behaviour for the system as
a whole, creating a vigorous system that has the ability to find high quality solutions for prob-
lems with a huge search space. Dorigo et al. [6] proposed this system as a metaheuristic to solve
COPs. This metaheuristic has been proven to be vigorous and flexible since it has been put into
use successfully to different COPs. This fact can also be supported in the recent application by
Sreelaja [12], binary ACO can be implemented to solve a binary related problem if the problem
is well presented. Thus, the work of Sreelaja [12] has approved the usage of binary ACO which
relates to the binary propositional logic such as 2SAT. ACO can be implemented in HNN-2SAT by
assigning the artificial ant as neurons with the potential state of 1 and−1. Hence, the aim of the of
the ACO inHNN-2SAT is to find the interpretation that minimize the cost function corresponds to
the P2SAT logical rule. The work of Changdar et al. [5] has contributed to the main formulation
of the proposed ACO in HNN-2SAT, with major modifications in the fitness calculation to align
with 2SAT logical rule representation. The implementation of ACO algorithm in learning P2SAT

(HNN-2SATACO) is inspired by Changdar et al. [5]:

Step 1: Initialization. Initialize potential biploar neuron state , Si where Si(t) ∈ [−1, 1].

Step 2: Fitness evaluation. Calculate the fitness of Si(t) using the following equation [9]:

f(Si(t)) =

NC∑
i=1

Ci, (11)

where NC is the number of clause in P2SAT and Ci is given as follows:

Ci =

{
1, true,
0, false.

(12)

Step 3: Pheromone density initialization. Pheromone for each value of candidate group 1 or −1
is represented by a real vector Tij(1) = (Ti1, Ti2, ...., TiU ) and Tij(−1) = (Ti1, Ti2, ...., TiU ) where
each Tij is a random number between [0, 1], i = 1, 2, ..., V ; j = 1, 2, ..., U .

Step 4: Visibility density initialization. Visibility density for each value of candidate group 1 or
−1 is represented by a real vector ηij(1) = (ηi1, ηi2, ...., ηiU ) and ηij(−1) = (ηi1, ηi2, ...., ηiU ) where
each ηij is a random number between [0, 1], i = 1, 2, ..., V ; j = 1, 2, ..., U .

Step 5: Ants searching phase. The movement probability of the ant ”k” (k = 1, 2, ...,M) is de-
fined as follows:

pkij(−1) =
[Tij(−1)]

α
. [ηij(−1)]

β

[Tij(−1)]
α
. [ηij(−1)]

β
+ [Tij(1)]

α
. [ηij(1)]

β
, (13)

where α (α > 0) is the relative importance of the pheromone and β (β > 0) is the relative im-
portance of the visibility of the ants. Hence, the complementary of the movement is written as
follows:

pkij(−1) = 1− pkij(−1), (14)
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where pkij is the probability of movement from the bit ”i” to the state ”j” at time t.

Step 6: Evaporation. The decrement of pheromone is based on the following equations:

Tij(−1)(t+ 1) = (1− ρ)Tij(−1)(t) + ∆T bestij , (15)

Tij(1)(t+ 1) = (1− ρ)Tij(1)(t) + ∆T bestij , (16)

∆T bestij =
1

f(Sbesti )
, (17)

where ρ is the coefficient representing evaporation rate and ρ ∈ [0, 1], f(Sbesti ) is the number of
clause for 2SAT.

Step 7: Refinement. Calculate the fitness of the solution f(Si) by using equation (11). The op-
timal state found so far will be recorded as S∗i (t + 1). If S∗i (t + 1) is superior than S∗i (t), then
S∗i (t) is replaced by S∗i (t + 1). Pheromone density will be updated by using equation (13). If
f(Si) 6= NC, repeat Step 4 to Step 7 until pre-determined trial, Trial is achieved.

2.4 Experimental Design

In this paper, simulation for HNN-2SATACO will be implemented in Dev C++ Version 5.11
on a computer equipped with Intel Core i7 2.5GHz processor and 8GB RAM using Windows 8.1.
All outputs that exceed the threshold CPU time, which is 24 hours are excluded. The effectiveness
of our proposed method will be compared with several existing model such as:

a) Exhaustive Search (HNN-2SATES) deploys a simple random search during learning phase of
HNN. In order to make a fair comparison, the logical rule of this method has been changed to
P2SAT instead of using HORNSAT.

b) Genetic Algorithm (HNN-2SATGA) proposed by Kasihmuddin et al. [9]. GA consist of chro-
mosomes that serve as a potential neuron state during learning phase of HNN. This method
consists of several operators such as selection, crossover, mutations. Note that, HNN-2SATGA
represents the performance of the evolutionary algorithm.

c) Kernel Hopfield Neural Network (KHNN-2SAT) adds kernel function such as Gaussian into
the local field of the HNN-2SAT. The kernel function increases the storage capacity of HNN-
2SAT.

Simulated data set is used for this experiment by generating random neuron state during both
learning and retrieval phase of HNN-2SAT. Note that, Hyperbolic Activation function (HTAF)
will be implemented during retrieval phase due to avoid possible neuron oscillation that leads
to suboptimal neuron state. The parameter involved in all HNN-2SAT model are given in Ta-
ble 1 until Table 4. Note that, each HNN-2SAT model will generate 100 different logical combina-
tion (COMBMAX) to avoid possible biasness. To assess the quality of the retrieval phase, each
COMBMAX will produce 100 final neuron states (Trial) via local field and Hyperbolic Activa-
tion Function. By creating 100 final neuron states, we can assess the capability of the HNN-2SAT
in producing global minimum solution. Most of the parameters in ACO is set based on the work
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of Wan et al. [13]. [13] has been a great reference for the most feasible parameter of binary ACO
which will be applied in our propposed HNN-2SATACO. Figure 1 shows the general implemen-
tation of HNN-2SAT model.

Table 1: List of parameter in HNN-2SATACO (Proposed work).

Parameter Considered Parameter Value
Neuron Combination COMBMAX 100 [9]

Trial 100 [9]
Tolerance Value (ω) 0.001 [9]
Activation Function Hyperbolic [9]
Number of Ant 50 [13]
Pheromone (α) 1 [13]
Visibility (β) 3 [13]

Exploration of the pheromone (ρ) [0, 1] [13]

Table 2: List of parameter in HNN-2SATGA [9].

Parameter Considered Parameter Value
Neuron Combination COMBMAX 100 [9]

Trial 100 [9]
Tolerance Value (ω) 0.001 [9]
Activation Function Hyperbolic [9]

Number of Chromosome 100 [9]
Number of generation 100 [9]

Selection Rate 0.1
Crossover Rate 1
Mutation Rate 0.1

Table 3: List of parameter in HNN-2SATES [9].

Parameter Considered Parameter Value
Neuron Combination COMBMAX 100 [9]

Trial 100 [9]
Tolerance Value (ω) 0.001 [9]
Activation Function Hyperbolic [9]

Table 4: List of parameter in KHNN-2SAT.

Parameter Considered Parameter Value
Neuron Combination COMBMAX 100 [9]

Trial 100 [9]
Tolerance Value (ω) 0.001 [9]

Type of Kernel Linear Kernel
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Figure 1: Flow diagram for algorithm of implementation of the HNN-2SAT models.

45



L. C. Kho et al. Malaysian J. Math. Sci. 16(1): 37–53 (2022) 37 - 53

2.5 Performance Evaluation

To evaluate the efficiency of all HNN-2SAT models, a total of six performance evaluation met-
rics, namely root mean square error, mean absolute error, sum of squared error, mean absolute
percentage error, global minima ratio and CPU time will be analysed.

2.5.1 Root Mean Square Error

Root mean square error (RMSE) is normally used to compute the differences between target
value and the actual observed value of the model. RMSE measure the deviation of the error be-
tween current solution fitness with the desired fitness. The equation for RMSE is defined as [11]

RMSE =

n∑
i=1

√
1

n
(fNC − fi)2, (18)

where fNC is the total number of 2SAT clauses, fi is the fitness of the solution in HNN-2SAT
model and n is the number of iteration before fi = fNC . The best HNN-2SAT model will have
the smallest value of RMSE. The main contribution of [11] is the standard formulation of RMSE
which will be used in this work.

2.5.2 Mean Absolute Error

Mean absolute error (MAE) is the mean of the absolute values of the errors. MAE is derived
from the absolute difference of fNC − fi. MAE is defined by the following equation [14].

MAE =

n∑
i=1

1

n
|fNC − fi|, (19)

where fNC is the total number of 2SAT clauses, fi is the fitness of the solution inHNN-2SATmodel
andn is the number of iteration before fi = fNC . Similar to RMSE, the least value ofMAE indicates
the best HNN-2SATmodel. Themain contribution of [14] is the fundamental formulation ofMAE
to be applied in our work.

2.5.3 Sum of Squared Error

Sum of squared error (SSE) is the addition of the squared differences between the target value
and observed value of themodel. SSE evaluate the sensitivity of the error of theHNN-2SATmodel.
The equation for SSE is expressed as:

SSE =

n∑
i=1

(fi − fNC)2. (20)

The best HNN-2SAT model will be determined by the smallest value of SSE.
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2.5.4 Mean Absolute Percentage Error

Mean absolute percentage error (MAPE) is the mean of the absolute values of the errors in
percentage terms. MAPE is a measure the error of HNN-2SAT in the percentage form. MAPE can
be expressed as:

MAPE =

n∑
i=1

100

n

|fNC − fi|
|fi|

. (21)

The theory of MAPE is very simple, however, it has a crucial flaw. MAPE cannot be used if the
observed value is zero as it will lead to division by zero. The best HNN-2SATmodel will have the
lowest percentage of MAPE.

2.5.5 Global and Local Minima Ratio

Global minima ratio, Zm is defined as the ratio of the total global minimum energy to the to-
tal number of simulations. Each HNN-2SAT model will produce 10,000 solutions per execution,
hence the ratio of global minimum energy will help to determine the accuracy of the model. Ev-
ery computed final energy of the neurons in HNN-2SAT model is filtered by a specific value of
tolerance, ω. The final energy is considered as global minimum energy if it is within the tolerance
value. The equation of global minima ratio is defined as

Zm =
1

tc

n∑
i=1

NHP2SAT
. (22)

The equation of local minima ratio is defined as:

Lm = 1− Zm, (23)

where t is the number of trial, c is the neuron combination and NHP2SAT
is the number of global

minimum energy of the proposed model. HNN-2SAT model with higher value of Zm has higher
accuracy.

2.5.6 Computational Time

CPU time is defined as the time required by a particular HNN-2SATmodel to finish one execu-
tion. CPU time denotes the stability and competency of the HNN-2SATmodels. Each simulations
will be run on identical processor to cancel off the effect of bad sector and memory build-up.
Equation of the CPU time is given by

CPU_Time = Learning_Time+Retrieval_Time. (24)

The best HNN-SAT model has the least computation time during the learning phase. Hence, the
best HNN-2SAT model will have the shortest CPU time.
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3 Results and Discussion

The performance of simulated program for all HNN-2SAT models will be discussed based on
efficiency, accuracy and stability. Efficiency of the model will be assessed based on the values of
RMSE,MAE, SSE andMAPE. Accuracy of themodelwill be evaluated based on the globalminima
ratio, Zm. Stability of the model will be determined by the CPU time.

Figure 2: RMSE for HNN-2SAT models.

Figure 3: MAE for HNN-2SAT models.
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Figure 4: SSE for HNN-2SAT models.

Figure 5: MAPE for HNN-2SAT models.

Figure 2, Figure 3 and Figure 4 shows the RMSE, MAE and SSE results for all HNN-2SAT
models. As the results shown, HNN-2SATACO outperformed HNN-2SATES, KHNN-2SATES
and HNN-2SATGA in terms of RMSE, MAE and SSE. There were no results reported for HNN-
2SATES after NN = 60 and no results for KHNN-2SATES after NN = 70 since these 2 learn-
ing model exceeds the threshold CPU time. It can be seen that the solution in HNN-2SATES
and KHNN-2SATES has deviated further from the optimal fitness by judging from the value of
RMSE. The value of MAE has also increased due to this huge deviation because the probability
of finding consistent P2SAT interpretation decreases dramatically as the number of P2SAT clause
increases. HNN-2SATGA needs more initial iterations before chromosomes can reach global so-
lution, hence leads to error accumulation and higher value of errors. On contrary, the effect of
interaction between the ants and pheromone density helps HNN-2SATACO to diversify candi-
date solution in search space. Any non-fit solution after pheromone evaporation will be improved
further by pheromone density initialization. Two layered optimization mechanism of pheromone
initialization and pheromone evaporation reduces the deviation error of the network and results
in positive results which is the minimal RMSE, MAE and SSE accumulation. Value of RMSE,
MAE and SSE for all HNN-2SAT models have seen an increase in trend as the number of neurons
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of P2SAT clause increases. This is due to the high number of iterations required to satisfy high
number of clauses during the learning phase.

Figure 5 shows the MAPE results for all HNN-2SAT models. Based on Figure 5, the value of
MAPE for HNN-2SATACO is much lower compare to the other models. A large percentage of
clause in HNN-2SATES and KHNN-2SATES from the total P2SAT clause is not fully satisfied in
the learning phase. The MAPE value rises as the number of P2SAT inconsistencies increases and
the probability of getting all satisfied clause decreases dramatically. Around 49% of the P2SAT

clauses is inconsistent before the learning arrive to the global solution because HNN-2SATGA
encounters inadequate chromosomal crossover and needs more iterations to attain the correct
clause. In contrary, HNN-2SATACO has achieved more consistent clause from the total clause
since it has minimal value of MAPE. Interaction between ants through the pheromone density
has reduced the possibility of HNN-2SATmodel to meet inconsistent solution. According to [13],
pheromone density plays an important role to reduce the probability of the ant to get trapped in
the suboptimal path.

Table 5: Zm and Lm for HNN-2SAT models.

HNN-2SATACO HNN-2SATGA KHNN-2SATES HNN-2SATES

NN Zm Lm Zm Lm Zm Lm Zm Lm

10 1.0000 0 1.0000 0 1.0000 0 1.0000 0
20 1.0000 0 1.0000 0 1.0000 0 1.0000 0
30 1.0000 0 1.0000 0 1.0000 0 0.9992 0.0008
40 1.0000 0 1.0000 0 1.0000 0 0.9983 0.0017
50 1.0000 0 1.0000 0 0.9995 0.0005 0.9974 0.0026
60 1.0000 0 1.0000 0 0.9981 0.0019 0.9963 0.0037
70 1.0000 0 1.0000 0 0.9978 0.0022 − −
80 1.0000 0 1.0000 0 − − − −
90 1.0000 0 0.9994 0.0006 − − − −
100 1.0000 0 0.9942 0.0058 − − − −

Table 5 shows the global minima ratio, Zm for all HNN-2SAT models. If the value of Zm in
HNN-2SAT model is close to 1, almost all solution of the HNN-2SAT model has achieved global
minimum energy. In this analysis, we limit our comparison up to NN = 100 because several
HNN-2SAT model such as HNN-2SATES and KHNN-2SAT were trapped in trial and error state.
The complexity of the HNN-2SAT model will increase and the final state of the neurons tends to
trap at suboptimal solution (local minimum energy) when the number of neuron increases [9]. It
is shown in Table 5 that the value of Zm for HNN-2SATACO is closer to 1 compared to the other
HNN-2SATmodels. Note that, HNN-2SATES andKHNN-2SATESwere facing issue during learn-
ing phase because as the number of neurons increased, the probability of achieving the optimal
interpretation reduce dramatically. This reduces the relaxation time of the network before all the
neurons advance to retrieval phase. As a consequent, the neurons in HNN-2SATES and KHNN-
2SATES are not fully relaxed and tend to retrieve the wrong final states. HNN-2SATGA lowers
the convolution of the network to discover the correct states and unsatisfied P2SAT clauses will be
enhanced through crossover and mutation until it reaches the correct neuron state. In contrast,
HNN-2SATACO utilizes an effective searching technique that can complete the learning phase
with minimal complexity. As a result, the neuron state for HNN-2SATACO during retrieval phase
has minimal state oscillation and can be updated correctly.
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Figure 6: CPU time for HNN-2SAT models.

Figure 6 shows the CPU time for all HNN-2SAT models. Based on Figure 6, all models have
similar CPU time up to NN = 60 because all the HNN-2SAT model achieved zero cost function
at the same time. HNN-2SATES has reached its limits when NN > 60 and KHNN-2SATES when
NN > 70 as the CPU time exceeds the threshold CPU time set for this research. On the contrary,
HNN-2SATACO and HNN-2SATGA continues to produce results up to NN = 710. During learn-
ing phase ofHNN-2SAT, optimal searching technique is required to drive the solution tomaximum
fitness in acceptable time range. HNN-2SATES and KHNN-2SATES requires a significant amount
of time to reach the maximum fitness. At NN > 60, HNN-2SATES failed to accomodate the com-
plexity of the learning phase and is observed to trap in trial and error state during learning phase.
However, HNN-2SATACO and HNN-2SATGA are able to sustain up to NN = 710 and require
less CPU time to complete a single execution. HNN-2SATACO accentuates on fitness improve-
ment in every iteration. Solution fitness in HNN-2SATACO also significantly improves in every
learning iteration and this reduces the CPU time. The indirect communication of ants through
pheromone density has brought positive impact to the quality of the solutions in a shorter time.
HNN-2SATGA is reported to complete the learning phase slightly faster than HNN-2SATACO.
This shows that in the early learning phase, HNN-2SATACO takes more iterations to complete
both global search and local search while HNN-2SATGA can perform the crossover between par-
ent P2SAT chromosomes straight away in the learning phase. Hence, more CPU time is required
before the network can enter the relaxation phase for HNN-2SATACO.

4 Conclusions

Creating optimal HNN that is governed by logical rule is an important problem inmany appli-
cations especially in logic mining. In this work, the P2SAT is embbeded into HNN by comparing
the cost function with Lypunov Energy function. Due to the complexity of the learning phase
in the existing work, this work proposed a Hybrid ACO in finding the correct interpretation that
minimizes the cost function if theHNN-2SAT. The proposed approach calledHNN-2SATACO, has
been evaluated across various performance evaluation such as RMSE, MAE, SSE, MAPE, Zm and
CPU time. According to the experimental results, the HNN-2SATACO outperformed the other
HNN-2SATmodels in almost all performance evaluations. The proposed hybrid HNN-2SATACO
model gives minimal value for RMSE, MAE, SSE, and MAPE. All the solution retrieved from the
HNN-2SATACO are global minimum solution which leads to the value of Zm that is approach-
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ing 1. The proposed model has a reasonable CPU time and can generate final neuron state up to
NN = 710. For future work, we can aim to reduce the execution time by improving the initial
neuron state of the ACO. In this context, evolutionary algorithm such GA can be used to filter the
initial solution so that only optimal trail can be explored. In addition, ACO can be extended into
non-Satisfiable logical rule such as Maximum Satisfiability and Major Satisfiability [2] by mini-
mizing the cost function of the special logical rule.
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